Map
Definitions
def
adjust
[vefk]
(
f :
v -> v \ ef
k :
k
m :
Map[k, v]
)
: Map[k, v]
\ ef
with
Order[k]
Updates m
with k => f(v)
if k => v
is in m
.
Otherwise, returns m
.
def
adjustWithKey
[kvef]
(
f :
k -> (v -> v \ ef)
k :
k
m :
Map[k, v]
)
: Map[k, v]
\ ef
with
Order[k]
Updates m
with k => f(k, v)
if k => v
is in m
. Otherwise, returns m
.
def
count
[kvef]
(
f :
k -> (v -> Bool \ ef)
m :
Map[k, v]
)
: Int32
\ ef
Returns the number of mappings k => v
in m
that satisfy the predicate f
.
Purity reflective: Runs in parallel when given a pure function f
.
def
difference
[kv]
(
m1 :
Map[k, v]
m2 :
Map[k, v]
)
: Map[k, v]
\ Pure
with
Order[k]
Returns the difference of m1
and m2
, i.e. m1 - m2
.
That is, returns the map m1
with the keys removed that are in m2
.
def
differenceWith
[vefk]
(
f :
v -> (v -> Option[v] \ ef)
m1 :
Map[k, v]
m2 :
Map[k, v]
)
: Map[k, v]
\ ef
with
Order[k]
Returns the difference of m1
and m2
, i.e. m1 - m2
.
When a key k
is in both m1
and m2
, the associated values are passed to the merge function f
.
If f
returns None
the mapping with k
is thrown away (proper set difference).
If f
returns Some(v)
the mapping k => v
is included in the result.
def
differenceWithKey
[kvef]
(
f :
k -> (v -> (v -> Option[v] \ ef))
m1 :
Map[k, v]
m2 :
Map[k, v]
)
: Map[k, v]
\ ef
with
Order[k]
Returns the difference of m1
and m2
, i.e. m1 - m2
.
When a key k
is in both m1
and m2
, k
and the associated values are passed to the merge function f
.
If f
returns None
the mapping with k
is thrown away (proper set difference).
If f
returns Some(v)
the mapping k => v
is included in the result.
def
empty
[kv]
: Map[k, v]
\ Pure
Returns the empty map.
Map#{}
is syntactic sugar for empty
(Map#{} = empty()
).
def
exists
[kvef]
(
f :
k -> (v -> Bool \ ef)
m :
Map[k, v]
)
: Bool
\ ef
Returns true
if and only if at least one mapping in m
satisfies the predicate f
.
Returns false
if m
is the empty map.
Purity reflective: Runs in parallel when given a pure function f
.
def
explode
[ktv]
(
m :
Map[k, t[v]]
)
: Set[(k, v)]
\ Pure
with
Foldable[t]
Order[k]
Order[v]
Returns the set of tuples (k, v)
where v
is a value in t
and k => t
.
def
filter
[vefk]
(
f :
v -> Bool \ ef
m :
Map[k, v]
)
: Map[k, v]
\ ef
with
Order[k]
Returns a map of all mappings k => v
in m
where v
satisfies the predicate f
.
def
filterMap
[aefbk]
(
f :
a -> Option[b] \ ef
m :
Map[k, a]
)
: Map[k, b]
\ ef
with
Order[k]
Returns a map of all mappings k => v1
in m
where applying the function f
to v
produces
a Some(v1)
. Elements that produce None
are discarded.
def
filterMapWithKey
[kaefb]
(
f :
k -> (a -> Option[b] \ ef)
m :
Map[k, a]
)
: Map[k, b]
\ ef
with
Order[k]
Returns a map of all mappings k => v1
in m
where applying the function f
to (k, v)
produces
Some(v1)
. Elements that produce None
are discarded.
def
filterWithKey
[kvef]
(
f :
k -> (v -> Bool \ ef)
m :
Map[k, v]
)
: Map[k, v]
\ ef
with
Order[k]
Returns a map of all mappings k => v
in m
where (k, v)
satisfies the predicate f
.
def
find
[kvef]
(
f :
k -> (v -> Bool \ ef)
m :
Map[k, v]
)
: Option[(k, v)]
\ ef
Alias for findLeft
.
def
findLeft
[kvef]
(
f :
k -> (v -> Bool \ ef)
m :
Map[k, v]
)
: Option[(k, v)]
\ ef
Optionally returns the first mapping of m
that satisfies the predicate f
when searching from left to right.
def
findRight
[kvef]
(
f :
k -> (v -> Bool \ ef)
m :
Map[k, v]
)
: Option[(k, v)]
\ ef
Optionally returns the first mapping of m
that satisfies the predicate f
when searching from right to left.
def
foldLeft
[bvefk]
(
f :
b -> (v -> b \ ef)
s :
b
m :
Map[k, v]
)
: b
\ ef
Applies f
to a start value s
and all values in m
going from left to right.
That is, the result is of the form: f(...f(f(s, v1), v2)..., vn)
.
def
foldLeftWithKey
[bkvef]
(
f :
b -> (k -> (v -> b \ ef))
s :
b
m :
Map[k, v]
)
: b
\ ef
Applies f
to a start value s
and all key-value pairs in m
going from left to right.
That is, the result is of the form: f(...f(f(s, k1, v1), k2, v2)..., vn)
.
def
foldMap
[vefbk]
(
f :
v -> b \ ef
m :
Map[k, v]
)
: b
\ ef
with
Monoid[b]
Returns the result of mapping each value and combining the results.
def
foldMapWithKey
[kvefb]
(
f :
k -> (v -> b \ ef)
m :
Map[k, v]
)
: b
\ ef
with
Monoid[b]
Returns the result of mapping each key-value pair and combining the results.
def
foldRight
[vbefk]
(
f :
v -> (b -> b \ ef)
s :
b
m :
Map[k, v]
)
: b
\ ef
Applies f
to a start value s
and all values in m
going from right to left.
That is, the result is of the form: f(v1, ...f(vn-1, f(vn, s)))
.
def
foldRightWithCont
[vefbk]
(
f :
v -> ((Unit -> b \ ef) -> b \ ef)
z :
b
m :
Map[k, v]
)
: b
\ ef
Applies f
to a start value z
and all values in m
going from right to left.
That is, the result is of the form: f(v1, ...f(vn-1, f(vn, z)))
.
A foldRightWithCont
allows early termination by not calling the continuation.
def
foldRightWithKey
[kvbef]
(
f :
k -> (v -> (b -> b \ ef))
s :
b
m :
Map[k, v]
)
: b
\ ef
Applies f
to a start value s
and all key-value pairs in m
going from right to left.
That is, the result is of the form: f(k1, v1, ...f(kn-1, vn-1, f(kn, vn, s)))
.
def
foldRightWithKeyCont
[kvefb]
(
f :
k -> (v -> ((Unit -> b \ ef) -> b \ ef))
z :
b
m :
Map[k, v]
)
: b
\ ef
Applies f
to a start value z
and all key-value pairs in m
going from right to left.
That is, the result is of the form: f(k1, v1, ...f(kn-1, vn-1, f(kn, vn, z)))
.
A foldRightWithKeyCont
allows early termination by not calling the continuation.
def
foldWithKey
[bkvef]
(
f :
b -> (k -> (v -> b \ ef))
s :
b
m :
Map[k, v]
)
: b
\ ef
Alias for foldLeftWithKey
.
def
forAll
[kvef]
(
f :
k -> (v -> Bool \ ef)
m :
Map[k, v]
)
: Bool
\ ef
Returns true
if and only if all mappings in m
satisfy the predicate f
.
Returns true
if m
is the empty map.
Purity reflective: Runs in parallel when given a pure function f
.
def
forEach
[kvef]
(
f :
k -> (v -> Unit \ ef)
m :
Map[k, v]
)
: Unit
\ ef
Applies f
to every (key, value)
of m
.
def
forEachWithIndex
[kvef]
(
f :
Int32 -> (k -> (v -> Unit \ ef))
m :
Map[k, v]
)
: Unit
\ ef
Applies f
to tuple (index, key, value)
formed of the keys and values of
Map m
and the index of the traversal.
def
get
[kv]
(
k :
k
m :
Map[k, v]
)
: Option[v]
\ Pure
with
Order[k]
Returns Some(v)
if k => v
is in m
.
Otherwise returns None
.
def
getWithDefault
[kv]
(
k :
k
d :
v
m :
Map[k, v]
)
: v
\ Pure
with
Order[k]
Returns v
if k => v
is in m
.
Otherwise, returns d
.
def
insert
[kv]
(
k :
k
v :
v
m :
Map[k, v]
)
: Map[k, v]
\ Pure
with
Order[k]
Updates m
with k => v
.
def
insertWith
[vefk]
(
f :
v -> (v -> v \ ef)
k :
k
v :
v
m :
Map[k, v]
)
: Map[k, v]
\ ef
with
Order[k]
Updates m
with k => f(v, v1)
if k => v1
is in m
.
Otherwise, updates m
with k => v
.
def
insertWithKey
[kvef]
(
f :
k -> (v -> (v -> v \ ef))
k :
k
v :
v
m :
Map[k, v]
)
: Map[k, v]
\ ef
with
Order[k]
Updates m
with k => f(k, v, v1)
if k => v1
is in m
.
Otherwise, updates m
with k => v
.
def
intersection
[kv]
(
m1 :
Map[k, v]
m2 :
Map[k, v]
)
: Map[k, v]
\ Pure
with
Order[k]
Returns the left-biased intersection of m1
and m2
.
That is, key collisions are resolved by taking the mapping from m1
.
def
intersectionWith
[v1v2efv3k]
(
f :
v1 -> (v2 -> v3 \ ef)
m1 :
Map[k, v1]
m2 :
Map[k, v2]
)
: Map[k, v3]
\ ef
with
Order[k]
Returns the intersection of m1
and m2
where key collisions are resolved with the merge function f
.
def
intersectionWithKey
[kv1v2efv3]
(
f :
k -> (v1 -> (v2 -> v3 \ ef))
m1 :
Map[k, v1]
m2 :
Map[k, v2]
)
: Map[k, v3]
\ ef
with
Order[k]
Returns the intersection of m1
and m2
where key collisions are resolved with the merge function f
, taking both the key and values.
def
invert
[kv]
(
m :
Map[k, v]
)
: Map[v, Set[k]]
\ Pure
with
Order[k]
Order[v]
Returns the inverse map of m
.
That is, given a Map[k, v]
returns a map Map[v, Set[k]]
where every value is mapped to its key(s) in the original map.
def
isEmpty
[kv]
(
m :
Map[k, v]
)
: Bool
\ Pure
Returns true
if and only if m
is the empty map, i.e. Map(Nil)
.
def
isProperSubmapOf
[kv]
(
m1 :
Map[k, v]
m2 :
Map[k, v]
)
: Bool
\ Pure
with
Order[k]
Eq[v]
Returns true
if and only if all mappings in m1
occur in m2
and m1 != m2
.
def
isSubmapOf
[kv]
(
m1 :
Map[k, v]
m2 :
Map[k, v]
)
: Bool
\ Pure
with
Order[k]
Eq[v]
Returns true
if and only if all mappings in m1
occur in m2
.
def
iterator
[rkv]
(
rc :
Region[r]
m :
Map[k, v]
)
: Iterator[(k, v), r, r]
\ r
Returns an iterator over all key-value pairs in m
.
def
iteratorKeys
[rkv]
(
rc :
Region[r]
m :
Map[k, v]
)
: Iterator[k, r, r]
\ r
Returns an iterator over keys in m
.
def
iteratorValues
[rkv]
(
rc :
Region[r]
m :
Map[k, v]
)
: Iterator[v, r, r]
\ r
Returns an iterator over values in m
.
def
joinKeys
[kv]
(
sep :
String
m :
Map[k, v]
)
: String
\ Pure
with
ToString[k]
Returns the concatenation of the string representation of each key k
in m
with sep
inserted between each element.
def
joinValues
[kv]
(
sep :
String
m :
Map[k, v]
)
: String
\ Pure
with
ToString[v]
Returns the concatenation of the string representation of each value v
in m
with sep
inserted between each element.
def
joinWith
[kvef]
(
f :
k -> (v -> String \ ef)
sep :
String
m :
Map[k, v]
)
: String
\ ef
Returns the concatenation of the string representation of each key-value pair
k => v
in m
according to f
with sep
inserted between each element.
def
keysOf
[kv]
(
m :
Map[k, v]
)
: Set[k]
\ Pure
with
Order[k]
Returns the keys of m
.
def
map
[v1efv2k]
(
f :
v1 -> v2 \ ef
m :
Map[k, v1]
)
: Map[k, v2]
\ ef
Returns a map with mappings k => f(v)
for every k => v
in m
.
Purity reflective: Runs in parallel when given a pure function f
.
def
mapWithKey
[kv1efv2]
(
f :
k -> (v1 -> v2 \ ef)
m :
Map[k, v1]
)
: Map[k, v2]
\ ef
Returns a map with mappings k => f(k, v)
for every k => v
in m
.
Purity reflective: Runs in parallel when given a pure function f
.
def
maximumKey
[kv]
(
m :
Map[k, v]
)
: Option[(k, v)]
\ Pure
Optionally finds k => v
where k
is the largest key according to the Order
instance of k
.
Returns None
if m
is empty.
def
maximumKeyBy
[kefv]
(
cmp :
k -> (k -> Comparison \ ef)
m :
Map[k, v]
)
: Option[(k, v)]
\ ef
Optionally finds k => v
where k
is the largest key according to the given comparator cmp
.
Returns None
if m
is empty.
Purity reflective: Runs in parallel when given a pure function cmp
.
def
maximumValue
[kv]
(
m :
Map[k, v]
)
: Option[(k, v)]
\ Pure
with
Order[v]
Optionally finds k => v
where v
is the largest value.
Returns None
if m
is empty.
def
maximumValueBy
[vefk]
(
cmp :
v -> (v -> Comparison \ ef)
m :
Map[k, v]
)
: Option[(k, v)]
\ ef
Optionally finds k => v
where v
is the largest value according to the given comparator cmp
.
Returns None
if m
is empty.
Purity reflective: Runs in parallel when given a pure function cmp
.
def
memberOf
[kv]
(
k :
k
m :
Map[k, v]
)
: Bool
\ Pure
with
Order[k]
Returns true
if and only if m
contains the key k
.
def
minimumKey
[kv]
(
m :
Map[k, v]
)
: Option[(k, v)]
\ Pure
Optionally finds k => v
where k
is the smallest key according to the Order
instance of k
.
Returns None
if m
is empty.
def
minimumKeyBy
[kefv]
(
cmp :
k -> (k -> Comparison \ ef)
m :
Map[k, v]
)
: Option[(k, v)]
\ ef
Optionally finds k => v
where k
is the smallest key according to the given comparator cmp
.
Returns None
if m
is empty.
Purity reflective: Runs in parallel when given a pure function cmp
.
def
minimumValue
[kv]
(
m :
Map[k, v]
)
: Option[(k, v)]
\ Pure
with
Order[v]
Optionally finds k => v
where v
is the smallest value.
Returns None
if m
is empty.
def
minimumValueBy
[vefk]
(
cmp :
v -> (v -> Comparison \ ef)
m :
Map[k, v]
)
: Option[(k, v)]
\ ef
Optionally finds k => v
where v
is the smallest value according to the given comparator cmp
.
Returns None
if m
is empty.
Purity reflective: Runs in parallel when given a pure function cmp
.
def
query
[kefv]
(
p :
k -> Comparison \ ef
m :
Map[k, v]
)
: List[(k, v)]
\ ef
Extracts a range of key-value pairs from the map m
.
That is, the result is a list of all pairs (k, v)
where p(k)
returns Equal
.
def
queryWith
[kef1vef2]
(
p :
k -> Comparison \ ef1
f :
k -> (v -> Unit \ ef2)
m :
Map[k, v]
)
: Unit
\ ef1 + ef2
Applies f
to all key-value pairs (k, v)
from the map m
where p(k)
returns EqualTo
.
def
reduceLeft
[vefk]
(
f :
v -> (v -> v \ ef)
m :
Map[k, v]
)
: Option[v]
\ ef
Applies f
to all values in m
going from left to right until a single value v
is obtained. Returns Some(v)
.
That is, the result is of the form: Some(f(...f(f(v1, v2), v3)..., vn))
Returns None
if m
is the empty map.
def
reduceLeftWithKey
[kvef]
(
f :
k -> (v -> (k -> (v -> (k, v) \ ef)))
m :
Map[k, v]
)
: Option[(k, v)]
\ ef
Applies f
to all mappings in m
going from left to right until a single mapping (k, v)
is obtained. Returns Some((k, v))
.
That is, the result is of the form: Some(f(...f(f(k1, v1, k2, v2), k3, v3)..., kn, vn))
Returns None
if m
is the empty map.
def
reduceRight
[vefk]
(
f :
v -> (v -> v \ ef)
m :
Map[k, v]
)
: Option[v]
\ ef
Applies f
to all values in m
going from right to left until a single value v
is obtained. Returns Some(v)
.
That is, the result is of the form: Some(f(v1, ...f(vn-2, f(vn-1, vn))...))
Returns None
if m
is the empty map.
def
reduceRightWithKey
[kvef]
(
f :
k -> (v -> (k -> (v -> (k, v) \ ef)))
m :
Map[k, v]
)
: Option[(k, v)]
\ ef
Applies f
to all mappings in m
going from right to left until a single mapping (k, v)
is obtained. Returns Some((k, v))
.
That is, the result is of the form: Some(f(k1, v1, ...f(kn-2, vn-2, f(kn-1, vn-1, kn, vn))...))
Returns None
if m
is the empty map.
def
remove
[kv]
(
k :
k
m :
Map[k, v]
)
: Map[k, v]
\ Pure
with
Order[k]
Removes the mapping k
from the map m
.
def
sequence
[kmv]
(
m :
Map[k, m[v]]
)
: m[Map[k, v]]
\ Pure
with
Applicative[m]
Returns the result of running all the actions in the map m
.
def
singleton
[kv]
(
k :
k
v :
v
)
: Map[k, v]
\ Pure
with
Order[k]
Returns the singleton map where key k
is mapped to value v
.
Map#{k => v}
is syntactic sugar for singleton
(Map#{k => v} = singleton(k, v)
).
def
size
[kv]
(
m :
Map[k, v]
)
: Int32
\ Pure
Returns the size of m
.
def
sumKeys
[v]
(
m :
Map[Int32, v]
)
: Int32
\ Pure
Returns the sum of all keys in the map m
.
def
sumValues
[k]
(
m :
Map[k, Int32]
)
: Int32
\ Pure
Returns the sum of all values in the map m
.
def
sumWith
[kvef]
(
f :
k -> (v -> Int32 \ ef)
m :
Map[k, v]
)
: Int32
\ ef
Returns the sum of all key-value pairs k => v
in the map m
according to the function f
.
Purity reflective: Runs in parallel when given a pure function f
.
def
toChain
[ab]
(
m :
Map[a, b]
)
: Chain[(a, b)]
\ Pure
with
Order[a]
Returns the map m
as a chain of key-value pairs.
def
toDelayList
[kv]
(
m :
Map[k, v]
)
: DelayList[(k, v)]
\ Pure
Returns the map m
as a DelayList
of key-value pairs.
def
toDelayMap
[kv]
(
m :
Map[k, v]
)
: DelayMap[k, v]
\ Pure
Returns m
as a DelayMap
.
def
toList
[kv]
(
m :
Map[k, v]
)
: List[(k, v)]
\ Pure
Returns the map m
as a list of key-value pairs.
def
toMultiMap
[kv]
(
m :
Map[k, v]
)
: MultiMap[k, v]
\ Pure
with
Order[k]
Order[v]
Returns a MultiMap where key k
is mapped to the singleton set containing v
.
def
toMutDeque
[rkv]
(
rc :
Region[r]
m :
Map[k, v]
)
: MutDeque[(k, v), r]
\ r
Returns m
as a MutDeque.
def
toMutMap
[rkv]
(
rc :
Region[r]
m :
Map[k, v]
)
: MutMap[k, v, r]
\ r
Returns m
as a mutable map.
def
toSet
[kv]
(
m :
Map[k, v]
)
: Set[(k, v)]
\ Pure
with
Order[k]
Order[v]
Returns the map m
as a set of key-value pairs.
def
toString
[kv]
(
m :
Map[k, v]
)
: String
\ Pure
with
ToString[k]
ToString[v]
Returns a string representation of the given map m
.
def
traverse
[v1efmv2k]
(
f :
v1 -> m[v2] \ ef
m :
Map[k, v1]
)
: m[Map[k, v2]]
\ ef
with
Applicative[m]
Returns the result of applying the applicative mapping function f
to all the values of the
map m
.
def
traverseWithKey
[kv1efmv2]
(
f :
k -> (v1 -> m[v2] \ ef)
m :
Map[k, v1]
)
: m[Map[k, v2]]
\ ef
with
Applicative[m]
Returns the result of applying the applicative mapping function f
to all the key-value pairs
of the map m
.
def
unfold
[sefkv]
(
f :
s -> Option[(k, v, s)] \ ef
st :
s
)
: Map[k, v]
\ ef
with
Order[k]
Build a map by applying f
to the seed value st
.
f
should return Some(k,v,st1)
to signal a new key-value pair k
and v
and a new seed value st1
.
f
should return None
to signal the end of building the map.
def
unfoldWithIter
[efkv]
(
next :
Unit -> Option[(k, v)] \ ef
)
: Map[k, v]
\ ef
with
Order[k]
Build a map by applying the function next
to ()
. next
is expected to encapsulate
a stateful resource such as a file handle that can be iterated.
next
should return Some(k,v)
to signal a new key-value pair k
and v
.
next
should return None
to signal the end of building the map.
def
union
[kv]
(
m1 :
Map[k, v]
m2 :
Map[k, v]
)
: Map[k, v]
\ Pure
with
Order[k]
Returns the left-biased union of m1
and m2
.
That is, key collisions are resolved by taking the mapping from m1
.
def
unionWith
[vefk]
(
f :
v -> (v -> v \ ef)
m1 :
Map[k, v]
m2 :
Map[k, v]
)
: Map[k, v]
\ ef
with
Order[k]
Returns the union of m1
and m2
where key collisions are resolved with the merge function f
.
def
unionWithKey
[kvef]
(
f :
k -> (v -> (v -> v \ ef))
m1 :
Map[k, v]
m2 :
Map[k, v]
)
: Map[k, v]
\ ef
with
Order[k]
Returns the union of m1
and m2
where key collisions are resolved with the merge function f
, taking both the key and values.
def
update
[vefk]
(
f :
v -> Option[v] \ ef
k :
k
m :
Map[k, v]
)
: Map[k, v]
\ ef
with
Order[k]
Updates m
with k => v1
if k => v
is in m
and f(v) = Some(v1)
. Otherwise, returns m
.
def
updateWithKey
[kvef]
(
f :
k -> (v -> Option[v] \ ef)
k :
k
m :
Map[k, v]
)
: Map[k, v]
\ ef
with
Order[k]
Updates m
with k => v1
if k => v
is in m
and f(k, v) = Some(v1)
. Otherwise, returns m
.
def
valuesOf
[kv]
(
m :
Map[k, v]
)
: List[v]
\ Pure
Returns the values of m
.