Set
Definitions
def
count
[aef]
(
f :
a -> Bool \ ef
s :
Set[a]
)
: Int32
\ ef
Returns the number of elements in s
that satisfy the predicate f
.
Purity reflective: Runs in parallel when given a pure function f
.
def
difference
[a]
(
s1 :
Set[a]
s2 :
Set[a]
)
: Set[a]
\ Pure
with
Order[a]
Returns the difference of s1
and s2
, i.e. s1 - s2
.
def
empty
[a]
: Set[a]
\ Pure
Returns the empty set.
Set#{}
is syntactic sugar for empty
i.e. Set#{} == empty()
.
def
enumerator
[ra]
(
rc :
Region[r]
s :
Set[a]
)
: Iterator[(Int32, a), r, r]
\ r
Returns an iterator over s
zipped with the indices of the elements.
def
exists
[aef]
(
f :
a -> Bool \ ef
s :
Set[a]
)
: Bool
\ ef
Returns true
if and only if at least one element in s
satisfies the predicate f
.
Returns false
if s
is the empty set.
def
filter
[aef]
(
f :
a -> Bool \ ef
s :
Set[a]
)
: Set[a]
\ ef
with
Order[a]
Returns the set of all elements of s
that satisfy the predicate f
.
def
filterMap
[aefb]
(
f :
a -> Option[b] \ ef
s :
Set[a]
)
: Set[b]
\ ef
with
Order[b]
Collects the results of applying the partial function f
to every element in s
.
def
find
[aef]
(
f :
a -> Bool \ ef
s :
Set[a]
)
: Option[a]
\ ef
Alias for findLeft
.
def
findLeft
[aef]
(
f :
a -> Bool \ ef
s :
Set[a]
)
: Option[a]
\ ef
Optionally returns the first element of s
that satisfies the predicate f
when searching from left to right.
def
findRight
[aef]
(
f :
a -> Bool \ ef
s :
Set[a]
)
: Option[a]
\ ef
Optionally returns the first element of s
that satisfies the predicate f
when searching from right to left.
def
flatMap
[aefb]
(
f :
a -> Set[b] \ ef
s :
Set[a]
)
: Set[b]
\ ef
with
Order[b]
Returns the result of applying f
to every element in s
and taking the union.
def
flatten
[a]
(
s :
Set[Set[a]]
)
: Set[a]
\ Pure
with
Order[a]
Returns the union of the elements in s
.
def
fold
[a]
(
s :
Set[a]
)
: a
\ Pure
with
Monoid[a]
Returns the result of applying combine
to all the elements in s
, using empty
as the initial value.
def
foldLeft
[baef]
(
f :
b -> (a -> b \ ef)
s :
b
s1 :
Set[a]
)
: b
\ ef
Applies f
to a start value s
and all elements in s
going from left to right.
That is, the result is of the form: f(...f(f(s, x1), x2)..., xn)
.
def
foldMap
[aefb]
(
f :
a -> b \ ef
s :
Set[a]
)
: b
\ ef
with
Monoid[b]
Returns the result of mapping each element and combining the results.
def
foldRight
[abef]
(
f :
a -> (b -> b \ ef)
s :
b
s1 :
Set[a]
)
: b
\ ef
Applies f
to a start value s
and all elements in s1
going from right to left.
That is, the result is of the form: f(x1, ...f(xn-1, f(xn, s))...)
.
def
foldRightWithCont
[aefb]
(
f :
a -> ((Unit -> b \ ef) -> b \ ef)
z :
b
s :
Set[a]
)
: b
\ ef
Applies f
to a start value z
and all elements in s
going from right to left.
That is, the result is of the form: f(x1, ...f(xn-1, f(xn, z))...)
.
A foldRightWithCont
allows early termination by not calling the continuation.
def
forAll
[aef]
(
f :
a -> Bool \ ef
s :
Set[a]
)
: Bool
\ ef
Returns true
if and only if all elements in s
satisfy the predicate f
.
Returns true
if s
is the empty set.
def
forEach
[aef]
(
f :
a -> Unit \ ef
s :
Set[a]
)
: Unit
\ ef
Applies f
to every element of s
.
def
forEachWithIndex
[aef]
(
f :
Int32 -> (a -> Unit \ ef)
s :
Set[a]
)
: Unit
\ ef
Applies f
to every element of s
along with that element's index.
def
insert
[a]
(
x :
a
s :
Set[a]
)
: Set[a]
\ Pure
with
Order[a]
Adds x
to s
.
def
intersection
[a]
(
s1 :
Set[a]
s2 :
Set[a]
)
: Set[a]
\ Pure
with
Order[a]
Returns the intersection of s1
and s2
.
def
isEmpty
[a]
(
s :
Set[a]
)
: Bool
\ Pure
Returns true if and only if s
is the empty set.
def
isProperSubsetOf
[a]
(
s1 :
Set[a]
s2 :
Set[a]
)
: Bool
\ Pure
with
Order[a]
Returns true if and only if every element in s1
appears in s2
and s != s2
.
def
isSubsetOf
[a]
(
s1 :
Set[a]
s2 :
Set[a]
)
: Bool
\ Pure
with
Order[a]
Returns true if and only if every element in s1
appears in s2
.
def
iterator
[ra]
(
rc :
Region[r]
s :
Set[a]
)
: Iterator[a, r, r]
\ r
Returns an iterator over s
.
def
join
[a]
(
sep :
String
s :
Set[a]
)
: String
\ Pure
with
ToString[a]
Returns the concatenation of the string representation
of each element in s
with sep
inserted between each element.
def
joinWith
[aef]
(
f :
a -> String \ ef
sep :
String
s :
Set[a]
)
: String
\ ef
Returns the concatenation of the string representation
of each element in s
according to f
with sep
inserted between each element.
def
map
[aefb]
(
f :
a -> b \ ef
s :
Set[a]
)
: Set[b]
\ ef
with
Order[b]
Returns the result of applying f
to every element in s
.
Note: The returned set may be smaller than s
.
def
maximum
[a]
(
s :
Set[a]
)
: Option[a]
\ Pure
Optionally finds the largest element of s
according to the Order
on a
.
Returns None
if s
is empty.
def
maximumBy
[aef]
(
cmp :
a -> (a -> Comparison \ ef)
s :
Set[a]
)
: Option[a]
\ ef
Optionally finds the largest element of s
according to the given comparator cmp
.
Returns None
if s
is empty.
Purity reflective: Runs in parallel when given a pure function f
.
def
memberOf
[a]
(
x :
a
s :
Set[a]
)
: Bool
\ Pure
with
Order[a]
Returns true if and only if x
is a member of s
.
def
minimum
[a]
(
s :
Set[a]
)
: Option[a]
\ Pure
Optionally finds the smallest element of s
according to the Order
on a
.
Returns None
if s
is empty.
def
minimumBy
[aef]
(
cmp :
a -> (a -> Comparison \ ef)
s :
Set[a]
)
: Option[a]
\ ef
Optionally finds the smallest element of s
according to the given comparator cmp
.
Returns None
if s
is empty.
Purity reflective: Runs in parallel when given a pure function f
.
def
partition
[aef]
(
f :
a -> Bool \ ef
s :
Set[a]
)
: (Set[a], Set[a])
\ ef
with
Order[a]
Returns a pair of sets (s1, s2)
.
s1
contains all elements of s
that satisfy the predicate f
.
s2
contains all elements of s
that do not satisfy the predicate f
.
def
range
(
b :
Int32
e :
Int32
)
: Set[Int32]
\ Pure
Returns a set of all integers between b
(inclusive) and e
(exclusive).
Returns empty()
if b >= e
.
def
reduceLeft
[aef]
(
f :
a -> (a -> a \ ef)
s :
Set[a]
)
: Option[a]
\ ef
Applies f
to all elements in s
going from left to right until a single value v
is obtained. Returns Some(v)
.
That is, the result is of the form: Some(f(...f(f(x1, x2), x3)..., xn))
Returns None
if s
is the empty set.
def
reduceRight
[aef]
(
f :
a -> (a -> a \ ef)
s :
Set[a]
)
: Option[a]
\ ef
Applies f
to all elements in s
going from right to left until a single value v
is obtained. Returns Some(v)
.
That is, the result is of the form: Some(f(x1, ...f(xn-2, f(xn-1, xn))...))
Returns None
if s
is the empty set.
def
remove
[a]
(
x :
a
s :
Set[a]
)
: Set[a]
\ Pure
with
Order[a]
Removes x
from s
.
def
replace
[a]
(
from :
{ from = a }
to :
{ to = a }
s :
Set[a]
)
: Set[a]
\ Pure
with
Order[a]
Replaces the element from
with to
if from
is in s
. Otherwise, returns s
.
Note: The returned set may be smaller than s
.
def
singleton
[a]
(
x :
a
)
: Set[a]
\ Pure
with
Order[a]
Returns the singleton set containing x
.
Set#{x}
is syntactic sugar for singleton
i.e. Set#{x} == singleton(x)
.
def
size
[a]
(
s :
Set[a]
)
: Int32
\ Pure
Returns the size of s
.
def
subsets
[a]
(
s :
Set[a]
)
: Set[Set[a]]
\ Pure
with
Order[a]
Returns all subsets of s
.
def
sum
(
s :
Set[Int32]
)
: Int32
\ Pure
Returns the sum of all elements in the set s
.
def
sumWith
[aef]
(
f :
a -> Int32 \ ef
s :
Set[a]
)
: Int32
\ ef
Returns the sum of all elements in the set s
according to the function f
.
Purity reflective: Runs in parallel when given a pure function f
.
def
toChain
[a]
(
s :
Set[a]
)
: Chain[a]
\ Pure
Returns the set s
as a chain.
def
toDelayList
[a]
(
s :
Set[a]
)
: DelayList[a]
\ Pure
Returns the set s
as a DelayList
.
def
toList
[a]
(
s :
Set[a]
)
: List[a]
\ Pure
Returns the set s
as a list.
def
toMap
[ab]
(
s :
Set[(a, b)]
)
: Map[a, b]
\ Pure
with
Order[a]
Returns the association set s
as a map.
If s
contains multiple mappings with the same key, toMap
does not
make any guarantees about which mapping will be in the resulting map.
def
toMapWith
[ab]
(
f :
a -> b
s :
Set[a]
)
: Map[a, b]
\ Pure
with
Order[a]
Returns a map with elements of s
as keys and f
applied as values.
def
toMutDeque
[ra]
(
rc :
Region[r]
s :
Set[a]
)
: MutDeque[a, r]
\ r
Returns s
as a MutDeque.
def
toMutSet
[ra]
(
rc :
Region[r]
s :
Set[a]
)
: MutSet[a, r]
\ r
Returns the set s
as a MutSet
.
def
toString
[a]
(
s :
Set[a]
)
: String
\ Pure
with
ToString[a]
Returns a string representation of the given set s
.
def
unfold
[sefa]
(
f :
s -> Option[(a, s)] \ ef
st :
s
)
: Set[a]
\ ef
with
Order[a]
Build a set by applying f
to the seed value st
.
f
should return Some(a,st1)
to signal a new set element a
and a new seed value st1
.
f
should return None
to signal the end of building the set.
def
unfoldWithIter
[efa]
(
next :
Unit -> Option[a] \ ef
)
: Set[a]
\ ef
with
Order[a]
Build a set by applying the function next
to ()
. next
is expected to encapsulate
a stateful resource such as a file handle that can be iterated.
next
should return Some(a)
to signal a value pair a
.
next
should return None
to signal the end of building the set.
def
union
[a]
(
s1 :
Set[a]
s2 :
Set[a]
)
: Set[a]
\ Pure
with
Order[a]
Returns the union of s1
and s2
.